【正确答案】正确答案:(Ⅰ)解方程组

得全部驻点(0,0)与(1,1).再求

(0,0)处

,AC—B
2
<0→(0,0)不是极值点. (1,1)处

,AC一B
2
>0,A>0→(1,1)是极小值点. 因此z(x,y)的驻点是(0,0),(1,1),极值点是(1,1)且是极小值点. (Ⅱ)D内唯一极值点(1,1)是极小值点,z(1,1)=一1. D的边界点(0,一2)处. z(0,一2)=(一2)
3
=一8<z(1,1) 因z(x,y)在有界闭区域D上连续,必存在最小值, 又z(0,一2)<z(1,1),(0,一2)∈D→z(1,1)不是z(x,y)在D的最小值.
