设f(x)在x 0 的邻域内四阶可导,且|f 4 (x)|≤M(M>0).证明:对此邻域内任一异于x 0 的点x,有
【正确答案】正确答案:由f(x)=f(x 0 )+f'(x 0 )(x-x 0 )+ f(x')=f(x 0 )+f'(x 0 )(x'-x 0 )+ 两式相加得 f(x)+f(x')-2f(x 0 )=f''(x 0 )(x-x 0 ) 2 +
【答案解析】