设函数f(x)二阶可导,f"(x)≥0,x∈(一∞,+∞),函数u在区间[a,b](a>0)上连续,证明:
【正确答案】正确答案:令 将f(x)在x=x 0 处展开成一阶泰勒公式: f(x)=f(x 0 )+f"(x 0 )(x一x 0 )+ (x一x 0 ) 2 由于f"(x)≥0,则f(x)≥f(x 0 )+f"(x 0 )(x一x 0 )。 令x=u(t),则f(u(t))≥f(x 0 )+f"(x 0 )(u(t)一x 0 )。 上式两边[0,a]在上对t积分,得 ∫ 0 a f[u(t)]dt≥∫ 0 a f(x 0 )dt+∫ 0 a f"(x 0 )[(u(t)一x 0 )]dt=af(x 0 )+f"(x 0 )[∫ 0 a [(u(t)一x 0 )]dt=af(x 0 )
【答案解析】