【正确答案】正确答案:令f(x)=∫
0
x
(t—t
2
)sin
2n
tdt,则f(x)在[0,+∞)可导,f'(x)=(x一x
2
)sin
2n
x.当0<x<1时,f'(x)>0;当x>1时,除x=kπ(k=1,2,3,…)的点(f'(x)=0)外,f'(x)<0,则f(x)在0≤x≤1单调上升,在x≥1单调减小,因此f(x)在[0,+∞)上取最大值f(1).又当t≥0时sint≤t。于是当x≥0时有 f(x)≤f(1)=∫
0
1
(t一t
2
)sin
2n
tdt≤∫
0
1
(t一t
2
)
2n
dt
