单选题 设n阶矩阵A=[α 1 ,α 2 ,…α n ],B=[α 1 ,α 2 ,…α n-1 ],若行列式|A|=1,则|A-B|=
【正确答案】 A
【答案解析】[解析] 由A-B=[α 1n ,α 21 ,…,α nn-1 ]将|A-B|的各列加到第一列得|A-B|=|0,α 21 ,…,α nn-1 |=0,应选A.或|A-B|=|α 1n ,α 21 ,…,α nn-1 |