【正确答案】正确答案:(Ⅰ)利用一阶全微分形式不变性与全微分的四则运算法则可得 dz=f'
1
d(x
2
+y
2
)+f'
2
d(e
y
cosx) =(2xdx+2ydy)f'
1
+(一e
y
sinxdx+e
y
cosxdy)f'
2
=(2xf'
1
—e
y
sinxf'
2
)dx+(2yf'
1
+e
y
cosxf'
2
)dy, → z'
x
=2xf'
1
—e
y
sinxf'
2
,z'
y
=2yf'
1
+e
y
cosxf'
2
. 从而

=z"=(x'
x
)'
y
=(2xf'
1
—e
y
sinxf'
2
)'
y
=2x(f'
1
)'
y
一e
y
sinxf'
2
一e
y
sinx(f'
2
)'
y
=2x(2yf"
11
+e
y
cosxf"
12
)一e
y
sinxf'
2
一e
y
sinx(2yf"
21
+e
y
cosxf"
22
) =4xyf'
11
+2e
y
(xcosx—ysinx)f"
12
一e
2y
sinxcosxf"
22
一e
y
sinxf'
2
. (Ⅱ)u=

复合而成的x,y,z的三元函数.先求du(从而也就求得

).由一阶全微分形式不变性及全微分的四则运算法则,得
