【正确答案】令F(x)=∫
axf(t)dt,则F(x)在[a,b]上三阶连续可导,取x
0=

,由泰勒公式得
F(a)=F(x
0)+F'(x
0)(a-x
0)+

(a-x
0)
2+

(a-x
0)
3,ξ
1∈(a,x
0),
F(b)=F(x
0)+F'(x
0)(b-x
0)+

(b-x
0)
2+

(b-x
0)
3,ξ
2∈(x
0,b),
两式相减得F(b)=F(a)=F'(x
0)(b-a)+

[F'''(ξ
1)+F'''(ξ
2)],即
∫
abf(x)dx=(b-a)

[f''(ξ
1)+f''(ξ
2)],
因为f''(x)在[a,b]上连续,所以存在ξ∈[ξ
1,ξ
2]

(a,b),使得
f''(ξ)=

[f''(ξ
1)+f''(ξ
2)],从而
∫
abf(x)dx=(b-a)
