设a
n
=
tan
n
χdχ(n≥2),证明:
【正确答案】
正确答案:a
n
+a
n+2
=
同理a
n
+a
n-2
=
因为tan
n
χ,tan
n+2
χ在[0,
]上连续,tan
n
χ≥tan
n+2
χ,且tan
n
χ,tan
n+2
χ不恒等, 所以
,即a
n
>a
n+2
, 于是
=a
n
+a
n+2
<2a
n
,即a
n
>
, 同理可证a
n
<
【答案解析】
提交答案
关闭