【正确答案】
【答案解析】2(x
2
+y
2
)f(xy)
[解析] z=∫
1
0
|xy-t|f(t)dt
=∫
xy
0
(xy-t)f(t)dt+∫
1
xy
(t-xy)f(t)dt
=xy∫
0
xy
f(t)dt-∫
0
xy
(t)dt+∫
1
xy
tf(t)dt-xy∫
1
xy
(t)dt则 z"
x
=y∫
0
xy
f(t)dt+xy
2
f(xy)-xy
2
f(xy)-xy
2
f(xy)-y∫
1
xy
f(t)dt+xy
2
f(xy)
=y∫
0
xy
f(t)dt-y∫
1
xy
f(t)dt
z"
xx
=y
2
f(xy)+y
2
f(xy)=2y
2
f(xy)
由变量对称性知
z"
yy
=2x
2
f(xy)则 z"
xx
+z"
yy
=2(x
2
+y
2
)f(xy).