填空题
【正确答案】
【答案解析】2(x 2 +y 2 )f(xy) [解析] z=∫ 1 0 |xy-t|f(t)dt
=∫ xy 0 (xy-t)f(t)dt+∫ 1 xy (t-xy)f(t)dt
=xy∫ 0 xy f(t)dt-∫ 0 xy (t)dt+∫ 1 xy tf(t)dt-xy∫ 1 xy (t)dt则 z" x =y∫ 0 xy f(t)dt+xy 2 f(xy)-xy 2 f(xy)-xy 2 f(xy)-y∫ 1 xy f(t)dt+xy 2 f(xy)
=y∫ 0 xy f(t)dt-y∫ 1 xy f(t)dt
z" xx =y 2 f(xy)+y 2 f(xy)=2y 2 f(xy)
由变量对称性知
z" yy =2x 2 f(xy)则 z" xx +z" yy =2(x 2 +y 2 )f(xy).