【正确答案】正确答案:(1)φ"(t)=1一cost>0(t∈(0,2π)),φ"(0)=φ"(2π)=0,又φ(t)在[0,2π]上连续,所以φ(t)在[0,2π]单调递增,值域为[φ(0),φ(2π)]=[0,2π],则x=φ(t)在[0,2π]存在连续的反函数t=t(x),定义域为[0,2π],即y(x)=ψ[t(x)]在[0,2π]上连续. (2)由旋转体的体积公式有: V=2π∫
0
2π
xy(x)dx=2π∫
0
2π
(t一sint)(1一cost)
2
dt =2π∫
0
2π
t(1一cost)
2
dt一2π(订sint(1一cost)
2
dt, 其中 ∫
0
2π
sint(1一cost)
2
dt=∫
—π
π
sint(1一cost)
2
dt=0。 再令 t=2π—s,那么V=2π∫
0
2π
(2π—s)(1一coss)
2
ds=2π∫
0
2π
2π(1—coss)
2
ds—V, 从而
