选择题   设三阶矩阵A的特征值为λ1=-1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(-3ξ2,2ξ1,5ξ3),则P-1(A*+2E)P等于______.
    A.
    B.
    C.
    D.
【正确答案】 B
【答案解析】A*+2E对应的特征值为μ1=10,μ2=-2,μ3=0,对应的特征向量为ξ1,ξ2,ξ3,则-3ξ2,2ξ1,5ξ3仍然是A*+2E的对应于特征值μ2=-2,μ1=10,μ3=0的特征向量,于是有选B.