设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫
ab
f(x)dx<2∫
ab
xf(x)bx.
【正确答案】正确答案:令F(t)=(a+t)∫
at
dx一2∫
at
xf(x)dx,则 F’(t)=∫
at
f(x)dx+(a+t)f(t)一2tf(t) =∫
at
f(x)dx一(t-a)f(t)=∫
at
f(x)dx-∫
at
f(t)dx =∫
at
[f(x)—f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)一f(t)≤0,于是有 F’(t)=∫
at
[f(x)一f(t)]dx≤0, 即F(t)单调递减,又F(a)=0,所以F(b)<0,即 (a+b)∫
ab
f(x)dx一2∫
ab
xf(x)dx<0, 即(a+b)∫
ab
f(x)dx<2∫
ab
xf(x)dx.