单选题 Human memory is notoriously unreliable. Even people with the sharpest facial-recognition skills can only remember so much.
It"s tough to quantify how good a person is at remembering. No one really knows how many different faces someone can recall, for example, but various estimates tend to hover in the thousands—based on the number of acquaintances a person might have.
Machines aren"t limited this way. Give the right computer a massive database of faces, and it can process what it sees—then recognize a face it"s told to find—with remarkable speed and precision. This skill is what supports the enormous promise of facial-recognition software in the 21st century. It"s also what makes contemporary surveillance systems so scary.
The thing is, machines still have limitations when it comes to facial recognition. And scientists are only just beginning to understand what those constraints are. To begin to figure out how computers are struggling, researchers at the University of Washington created a massive database of faces—they call it MegaFace—and tested a variety of facial-recognition algorithms (算法) as they scaled up in complexity. The idea was to test the machines on a database that included up to I million different images of nearly 700,000 different people—and not just a large database featuring a relatively small number of different faces, more consistent with what"s been used in other research.
As the databases grew, machine accuracy dipped across the board. Algorithms that were right 95% of the time when they were dealing with a 13,000-image database, for example, were accurate about 70% of the time when confronted with 1 million images. That"s still pretty good, says one of the researchers, Ira Kemelmacher-Shlizerman. "Much better than we expected," she said.
Machines also had difficulty adjusting for people who look a lot alike—either doppelgangers (长相极相似的人), whom the machine would have trouble identifying as two separate people, or the same person who appeared in different photos at different ages or in different lighting, whom the machine would incorrectly view as separate people.
"Once we scale up, algorithms must be sensitive to tiny changes in identities and at the same time invariant to lighting, pose, age," Kemelmacher-Shlizerman said.
The trouble is, for many of the researchers who"d like to design systems to address these challenges, massive datasets for experimentation just don"t exist—at least, not in formats that are accessible to academic researchers. Training sets like the ones Google and Facebook have are private. There are no public databases that contain millions of faces. MegaFace"s creators say it"s the largest publicly available facial-recognition dataset out there.
"An ultimate face recognition algorithm should perform with billions of people in a dataset," the researchers wrote.
单选题 Compared with human memory, machines can ______.
【正确答案】 C
【答案解析】[解析] 根据题干信息词compared with human memory,machines可以把答案线索定位到前三段。
文章前两段指出人类的记忆是不可靠的,根据可能拥有的熟人数量来估计,一个人可以回忆出的不同面孔的数量在数千左右。接着第三段前两句提到:机器则不受这样的限制。为一台合适的计算机提供一个庞大的人脸数据库,它就可以处理它所见到的所有人脸信息。即机器不受人脸数量的限制,可以记住无限多的人脸。故C项正确。文中并未提及机器比人类能“更有效地识别人脸”“将朋友和仅是认识的人区分开”或是“感知人眼看不见的图像”,因此排除其他三项。
单选题 Why did researchers create MegaFace?
【正确答案】 C
【答案解析】[解析] 根据题干信息词create MegaFace,可以把答案线索定位到第四段第三句。
该句中的不定式To begin to figure out提示本句即答案所在。该句指出:为了着手弃清楚(To begin to figure out)计算机是如何努力(struggle)识别人脸的,华盛顿大学的研究人员创建了一个庞大的人脸数据库——他们称其为MegaFace。其中struggle的意思是“努力;艰难地行进”,结合上一句中提到的“在面部识别方面,机器仍然有其局限性。科学家们才刚刚开始了解这些制约因素是什么”,可知计算机在人脸识别方面受到一些制约因素的限制,识别人脸时存在问题和困难,MegaFace的创建正是为了了解计算机识别人脸时存在的问题,因此C项正确。其他三项均与创建MegaFace的目的无关,故均排除。
单选题 What does the passage say about machine accuracy?
【正确答案】 D
【答案解析】[解析] 根据题干信息词machine accuracy,可以把答案线索定位到第五段第一句。
该句指出:随着数据库的扩大(grew),机器的识别精确度也在全面下降(dipped)。接下来,文章用数据说明这一结论:当处理一个拥有1.3万个图像的数据库时,算法的准确率是95%,而处理拥有100万个图像的数据库时,正确率却在70%左右。因此正确答案为D项。第五段的最后两句提到研究人员伊拉·开梅尔马切一什利泽曼对于数据库规模扩大后机器的识别精确度表示满意:“比我们预期的要好得多。”可知机器的识别精确度超出了研究者的预期,因此A项错误。B项和C项文中均未提及,故排除。
单选题 What is said to be a shortcoming of facial-recognition machines?
【正确答案】 A
【答案解析】[解析] 根据题干信息词shortcoming of facial-recognition machines以及几个选项的关键词tell apart,identifying,sensitive,age可以把答案线索定位到第六段和第七段。
本题考查的是对文章细节信息的理解。第六段第一句指出,机器很难区分那些看起来非常相似的人。一方面:对于长相非常相似的人,机器难以将他们识别为两个不同的人。因此A项正确。另一方面:对于出现在不同照片中的同一个人,如果人物的年龄不同,或者灯光不同,机器就会错误地将其视为不同的人。但是文中并未提及“面部表情”和“人类情绪”,也未提及机器在区分同龄人时是否存在问题,故排除B、C、D三项。
单选题 What is the difficulty confronting researchers of facial-recognition machines?
【正确答案】 B
【答案解析】[解析] 根据题干信息词difficulty confronting researchers of facial-recognition machines以及几个选项的关键词huge datasets,public databases,algorithms和format可以把答案线索定位到最后两段。
倒数第二段指出:问题是……大规模的实验数据集根本不存在……还没有收录数百万人脸的公共数据库。最后一段通过研究人员所写内容——最终的人脸识别算法应该在数十亿人的数据集中进行,进一步明确了研究人员面临的困难,即目前还没有收录大量人脸样本的公共数据库,无法在这样的数据库中进行人脸识别算法测试。因此B项是正确答案。A项与文章第三段中的“为一台合适的计算机提供一个庞大的人脸数据库,它就可以处理它所见到的所有人脸信息”意思相反,因此A项错误。C、D两项原文没有提及,故排除。