已知随机变量X的概率密度为f(x)=Ae x(B-x) (一∞<x<+∞),且E(X)=2D(X),试求: (Ⅰ)常数A,B之值; (Ⅱ)E(X 2 +e X ); (Ⅲ)Y=|
【正确答案】正确答案:(I) (Ⅱ)E(X 2 +e X )=E(X 2 )+E(e X ),而 E(X 2 )=D(X)+[E(X)] 2 = 所以E(X 2 +e X )= . (Ⅲ)由于X~ . 显然,当y<0时,F(y)=0;当y≥0时,
【答案解析】解析:f(x)=Ae x(B-x) = ,可以将f(x)看成正态分布