设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f'(x)<1(x∈(0,1)),求证: [∫ 0 1 f(x)dx] 2 >∫ 0 1 f 3 (x)dx.
【正确答案】正确答案:即证[∫ 0 1 f(x)dx] 2 一∫ 0 1 f 3 (x)dx>0.考察F(x)=[∫ 0 x f(t)dt] 2 —∫ 0 x f 3 (t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫ 0 x f(t)dt] 2 一∫ 0 x f 3 (t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F'(x)=f(x)[2∫ 0 x f(t)dt一f 2 (x)]. 由题设知f(x)在[0,1]单调上升,故f(x)>f(0)=0(x∈(0,1]),从而F'(x)与g(x)=2∫ 0 x f(t)dt一f 2 (x)同号.计算可得 g'(x)=2f(x)[1一f'(x)]>0(x∈(0,1)), 结合g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,故g(x)>g(0)=0(x∈(0,1]),也就有F'(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫ 0 1 f(x)dx] 2 一∫ 0 1 f 3 (x)dx>0.
【答案解析】