【正确答案】正确答案:(Ⅰ)令F(x)=

a
k
sinkx-

coskx).显然,F′(x)=f(x).由于F(x)以2π为周期且F(0)=F(2π),故F(x)在[0,2π]上连续,从而必有最大值与最小值.设F(x)分别在x
1
,x
2
达到最大值与最小值,且x
1
≠x
2
,x
1
,x
2
∈[0,2π),则F(x
1
),F(x
2
)也是F(x)在(-∞,+∞)上的最大值,最小值,因此x
1
,x
2
必是极值点.又F(x)可导,由费马定理知F′(x
1
)=f(x
1
)=0,F′(x
2
)=f(x
2
)=0. (Ⅱ)f
(m)
(x)同样为(Ⅰ)中类型的函数即可写成f
(m)
(x)=
