【正确答案】正确答案:作辅助函数F(x)=∫
0
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,又0=∫
0
1
xf(x)dx=∫
0
1
xdF(x)=xF(x)|
0
1
—∫
0
1
F(x)dx=0,由积分中值定理,存在点η∈(0,1),使得F(η)=0.于是,在[0,η]和[η,1]上分别对F(x)应用洛尔定理,存在点ξ
1
∈(0,η),ξ
2
∈(η,1),使得f(ξ
1
)=f(ξ
2
)=0. 在[ξ
1
,ξ
2
]上对f(x)再应用洛尔定理,存在点ξ∈(ξ
1
,ξ
2
)
