设F 1 (x),F 2 (x)为两个分布函数,其相应的概率密度f 1 (x)与f 2 (x)是连续函数,则必为概率密度的是( )
【正确答案】 D
【答案解析】解析:因为f 1 (x)与f 2 (x)均为连续函数,故它们的分布函数F 1 (x)与F 2 (x)也连续.根据概率密度的性质,应有f(x)非负,且∫ -∞ +∞ f(x)dx=1.在四个选项中,只有D项满足. ∫ -∞ +∞ [f 1 (x)F 2 (x)+f 2 (x)F 1 (x)]dx =∫ -∞ +∞ [F 1 (x)F 2 (x)]’dx =F 1 (x)F 2 (x)| -∞ +∞ =1—0=1, 故选项D正确.