设A是三阶实对称矩阵,r(A)=1,A
2
-3A=O,设(1,1,-1)
T
为A的非零特征值对应的特征向量.
(1)求A的特征值;
(2)求矩阵A.
【正确答案】正确答案:(1)A
2
-3A=O

|A||3E-A|=0

λ=0,3,因为r(A)=1,所以λ
1
=3,λ
2
= λ
3
=0. (2)设特征值0对应的特征向量为(χ
1
,χ
2
,χ
3
)
T
,则χ
1
+χ
2
-χ
3
=0,则0对应的特征向量为α
2
=(-1,1,0)
T
,α
3
=(1,0,1)
T
,令

【答案解析】