【正确答案】这里m=1,求的是f(x
0+h)-f(x
0)=hf'(x
0+θh)(0<θ<1)当h→0时中值θ的极限.为解出θ,按题中条件,将f'(x
0+θh)在x=x
0展开成带皮亚诺余项的n-1阶泰勒公式得
f'(x
0+θh)=f'(x
0)+f''(x
0)θh+

f
(3)(x
0)(θh)
2+…+

f
(n)(x
0)(θh)
n-1+o(h
n-1)
=f'(x
0)+

f
(n)(x
0)(θh)
n-1+o(h
n-1)(h→0),
代入原式得
(x
0+h)-f(x
0)=hf'(x
0)+

f
(n)(x
0)θ
n-1h
n+o(h
n) ①
再将f(x
0+h)在x=x
0展开成带皮亚诺余项的n阶泰勒公式
f(x
0+h)-f(x
0)=f'(x
0)h+…+

f
(n)(x
0)h
b+o(h
n)
=f'(x
0)h+

f
(n)(x
0)h
n+o(h
n)(h→0), ②
将②代入①后两边除以h
n得

令h→0,得
