设一抛物线y=ax 2 +bx+C过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
【正确答案】正确答案:因为曲线过原点,所以C=0,又曲线过点(1,2),所以a+b=2,b=2一a. 因为a<0,所以b>0,抛物线与x轴的两个交点为 ,所以
【答案解析】