设A是n(n≥3)阶矩阵,证明:(A * ) * =|A| n-2 A.
【正确答案】正确答案:(A * ) * A * =|A * |E=|A| n-1 E,当r(A)=n时,r(A * )=n,A * =|A|A -1 ,则 (A * ) * A * =(A * ) * |A|A -1 =|A| n-1 E,故(A * ) * = |A| n-2 A.当r(A)=n-1时,|A|= 0,r(A * )=1,r[(A * ) * ]=0,即(A * ) * =O,原式显然成立.当r(A)<n-1时,|A|= 0,r(A * )=0,(A * ) * =O,原式也成立.
【答案解析】