【正确答案】正确答案:由Aα
3
=0=0α
3
,知λ=0是A的特征值,α
3
是λ=0的特征向量. 由已知条件有 A(α
1
,α
2
,α
3
)=(α
1
-α
2
+3α
3
,4α
1
-3α
2
+5α
3
,0), =(α
1
,α
2
,α
3
)

记P=(α
1
,α
2
,α
3
),由α
1
,α
2
,α
3
线性无关,则矩阵P可逆,故P
-1
AP=B,其中B=

,因此A~B. 因为相似矩阵有相同的特征值,而矩阵B的特征多项式 |λE-B|=

=λ(λ+1)
2
, 所以矩阵B,也即A的特征值为-1,-1,0. 对于矩阵B,

所以矩阵B对应于特征值λ=-1的特征向量是β=(-2,1,1)
T
,若Bβ=λβ,则有(P
-1
AP)β=λβ,即A(PB)=λ(Pβ),那么矩阵A关于特征值λ=-1的特征向量是 Pβ=(α
1
,α
2
,α
3
)
