选择题
设A=(α
1
,α
2
,α
3
,α
4
),其中α
i
(i=1,2,3,4)是n维列向量,已知Ax=0的基础解系为ξ
1
=(-2,0,1,0)
T
,ξ
2
=(1,0,0,1)
T
,则下列向量组中线性无关的是______
A、
α
1
,α
2
.
B、
α
1
,α
3
.
C、
α
1
,α
4
.
D、
α
3
,α
4
.
【正确答案】
A
【答案解析】
由Ax=0的基础解系为ξ
1
=(-2,0,1,0)
T
,ξ
2
=(1,0,0,1)
T
,可知r(A)=2,所以A中线性无关列向量的个数为2,且满足
-2α
1
+α
3
=0,α
1
+α
4
=0,
由上可得α
3
=2α
1
=-2α
4
,因此可知α
1
,α
3
;α
1
,α
4
;α
3
,α
4
线性相关.故由排除法,应选A.
提交答案
关闭