解答题 13.设f(χ)为连续函数,证明:
(1)∫0πχf(sinχ)dχ=0πf(sinχ)dχ=πf(sinχ)dχ;
(2)∫0f(|sinχ|)dχ=4
【正确答案】(1)令I=∫0πχf(sinχ)dχ,则
I=∫0πχf(sinχ)dχ0π(π-t)f(sint)(-dt)=∫0π(π-t)F(sint)dt
=∫0π(π-χ)f(sinχ)dχ=π∫0π(sinχ)dχ-∫0πχf(sinχ)dχ-π∫0πf(sinχ)dχ-I,
则l=∫0πχf(sinχ)dχ=0πf(sinχ)dχ=πf(sinχ)dχ.
(2)∫0f(|sinχ|)dχ=∫πf(|sinx|)dχ=2∫0πf(|sinχ|)dχ
=2∫0πf(sinχ)dχ=4
【答案解析】