【正确答案】正确答案:因A
2
=O,则A
3
=O,故A
2
=O是A
3
=O的充分条件. 现证A
3
=O→A
2
=O 因A
3
=O,故|A
3
|一|A|
3
=0,即|A|=0,则A是不可逆矩阵. 故r(A)<2,即r(A)=O或,r(A)=1. 当r(A)=0时,A
3
=0→A
2
=0; 当r(A)=1时,A≠O,A的两列成比例.设A=

(1,k)≠0, A
2
=

其中μ≠0,若μ=0已证A
2
=O由A
3
=A
2
A=μAA
2
=μA
2
=O,μ≠0,得证A
2
=O. 故当A是2阶方阵时,A
2
=O
