设f(x)在区间[a,b]上满足a≤f(x)≤b,且|f'(x)|≤q<1,令u n =f(u n-1 )(n=1,2,…),u 0 ∈[a,b],证明:级数
【正确答案】正确答案:由|u n+1 -u n |=|f(u n )-f(u n-1 )|=|f'(ξ 1 )||u n -u n-1 | ≤q|u n -u n-1 |≤q 2 |u n-1 -u n-2 |≤…≤q n |u 1 -u 0 | 且 |u n+1 -u n |收敛,于是
【答案解析】