解答题 25.设f(x)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
【正确答案】令φ(x)=e-x0xf(t)dt,
因为φ(0)=φ(1)=0,所以存在ξ∈(0,1),使得φ'(ξ)=0,
而φ'(x)=e-x[f(x)-∫0xf(t)dt]且e-x≠0,故f(ξ)=∫0ξf(t)dt.
【答案解析】