【正确答案】正确答案:根据旋转体的体积公式, V=∫
1
t
πf
2
(x)dx=π∫
1
t
f
2
(x)dx, 而曲边梯形的面积为s=∫
1
t
f(x)dx,则由题意可知V=πts可以得到 V=π∫
1
t
(x)dx=πt∫
1
t
f(x)dx, 因此可得 ∫
1
t
f
2
(x)dx=t∫
1
t
f(x)dx 上式两边同时对t求导可得 f
2
(t)=∫
1
t
f(x)dx+tf(t), 即 f
2
(t)一tf(t)=∫
1
t
f(x)dx。 继续求导可得 2f(t)-f"(t)一tf"(t)=f(t), 化简 [2f(t)一t]f"(t)=2f(t). 亦即

解这个微分方程得

在f
2
(t)一tf(t)=∫
1
t
f(x)dx中令t=1,则f
2
(1)一f(1)=0,又f(t)>0,即f(1)=1,将其代入

因此该曲线方程为
