设f(χ)为连续函数,证明:
(1)∫
0
π
χf(sinχ)dχ=

f(sinχ)dχ=π

f(sinχ)dχ;
(2)∫
0
2π
(|sinχ|)dχ=4
【正确答案】正确答案:(1)令I=∫
0
π
χf(sinχ)dχ,则 I=∫
0
π
χf(sinχ)dχ

∫
π
0
(π-t)f(sint)(-dt)=∫
0
π
(π-t)f(sint)dt =∫
0
π
(π-χ)f(sinχ)dχ=π∫
0
π
f(sinχ)dχ-∫
0
π
χf(sinχ)dχ=π∫
0
π
f(sinχ)dχ-I, 则I=

(2)∫
0
2π
f(|sinχ|)dχ=∫
-π
π
f(|sinχ|)dχ=2∫
0
π
f(|sinχ|)dχ =2∫
0
π
f(sinχ)dχ=4

【答案解析】