设f(χ)为连续函数,证明: (1)∫ 0 π χf(sinχ)dχ= f(sinχ)dχ=π f(sinχ)dχ; (2)∫ 0 (|sinχ|)dχ=4
【正确答案】正确答案:(1)令I=∫ 0 π χf(sinχ)dχ,则 I=∫ 0 π χf(sinχ)dχ π 0 (π-t)f(sint)(-dt)=∫ 0 π (π-t)f(sint)dt =∫ 0 π (π-χ)f(sinχ)dχ=π∫ 0 π f(sinχ)dχ-∫ 0 π χf(sinχ)dχ=π∫ 0 π f(sinχ)dχ-I, 则I= (2)∫ 0 f(|sinχ|)dχ=∫ π f(|sinχ|)dχ=2∫ 0 π f(|sinχ|)dχ =2∫ 0 π f(sinχ)dχ=4
【答案解析】