【正确答案】正确答案:因为f(x)在[0,1]上连续,所以f'(x)在[0,1]上有最小值和最大值,设为m,M,即有x
1
,x
2
∈Eo,1],使f'(x
1
)=m,f'(x
2
)=M. 由中值定理知,对任意x∈[0,1],存在η∈(0,x),使f(x)=f(x)一f(0)=f'(η)x,于是有 f'(x
1
)x=mx≤f(x)=f(x)一f(0)=f'(η)x≤Mx=f'(x
2
)x, 积分得

因为f'(x)在[0,1]上连续,由介值定理知,必有ξ∈[x
1
,x
2
]

[0,1]或ξ∈[x
2
,x
1
]

[0,1],使
