解答题 10.设函数y(x)(x≥0)二阶可导且y'(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒为1,求此曲线y=y(x)的方程.
【正确答案】曲线y=y(x)上点P(x,y)处的切线方程为Y—y=y'(X—x).它与x轴的交点为由于y'(x)>0,y(0)=1,从而y(x)>0,于是两边对x求导并化简得yy''=(y')2.令P=y',则上述方程可化为
【答案解析】