确定常数a和b,使得函数
【正确答案】正确答案:由f(x)在x=0处可导,得f(x)在x=0处连续.由表达式知,f(x)在x=0右连续.于是,f(x)在x=0连续 (sinx+2ae x )=2a=f(0) 2a=-2b,即a+b=0. 又f(x)在x=0可导 f' + (0)=f' - (0).在a+b=0条件下,f(x)可改写成 于是 f' + (0)=[9arctanx+2b(x-1) 3 ]'| x=0 = +6b(x-1)2] 2x=0 =9+6b, f' - (0)=(sinx+2ae x )'| x=0 =1+2a. 因此f(x)在x=0可导
【答案解析】