【正确答案】正确答案:由f(x)在x=0处可导,得f(x)在x=0处连续.由表达式知,f(x)在x=0右连续.于是,f(x)在x=0连续

(sinx+2ae
x
)=2a=f(0)

2a=-2b,即a+b=0. 又f(x)在x=0可导

f'
+
(0)=f'
-
(0).在a+b=0条件下,f(x)可改写成

于是 f'
+
(0)=[9arctanx+2b(x-1)
3
]'|
x=0
=

+6b(x-1)2]
2
|
x=0
=9+6b, f'
-
(0)=(sinx+2ae
x
)'|
x=0
=1+2a. 因此f(x)在x=0可导
