设A,B为n阶矩阵,且A 2 =A,B 2 =B,(A+B) 2 =A+B.证明:AB=0.
【正确答案】正确答案:由A 2 =A,B 2 =B及(A+B) 2 =A+B=A 2 +B 2 +AB+BA得AB+BA=0或AB=一BA,AB=一BA两边左乘A得AB=-ABA,再在AB=一BA两边右乘A得ABA=一BA,则AB=BA,于是AB=0.
【答案解析】