解答题 设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记
问答题 15.证明二次型f对应的矩阵为2ααT+ββT
【正确答案】f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2
【答案解析】
问答题 16.若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
【正确答案】设A=2ααT+ββT,由于|α|=1,αTβ=βTα=0,则
Aα=(2ααT+ββT
=2α|α|2+ββTα=2α,所以α为矩阵对应特征值λ1=2的特征向量;Aβ=(2ααT+ββT)β=2ααTβ+β|β|2=β,所以β为矩阵对应特征值λ2=1的特征向量。而矩阵A的秩r(A)=r(2ααT+ββT)≤r(2ααT)+r(ββT)=2,所以λ3=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y12+y22
【答案解析】