【正确答案】正确答案:(Ⅰ)令f(t)=ln(1+t)—t。 当0≤t≤1时,f'(t)=

一1≤0,故当0≤t≤1时,f(t)≤f(0) =0,即当0≤t≤1时, 0≤ln(1+t)≤t≤1,从而 [ln(1+t)]
n
≤t
n
(n=1,2,…)。 又由|lnt|≥0得 ∫
0
1
|lnt|[ln(1+t)]
n
dt≤∫
0
t
t
n
|lnt|dt(n=1,2,…)。 (Ⅱ)由(Ⅰ)知,0≤u
n
=∫
0
1
|lnt|[ln(1+t)]
n
dt≤∫
0
1
t
n
|lnt|dt,因为 ∫
0
1
t
n
|lnt|dt=—∫
0
1
t
n
(lnt)dt
