根据两种证券组合报酬率的标准差表达式可以得出:①当r12=1时,σP=A1σ1+A2σ2,即组合报酬率的标准差等于两种证券报酬率标准差的加权平均数,选项A的说法正确;假设两种证券等比例投资,即投资比例均为1/2,相关系数为1,则σP=(σ1+σ2)/2,即组合报酬率的标准差等于两种证券报酬率标准差的算术平均数。选项B缺少“两种证券投资比例相等”这一条件,因此错误。②当r12=-1时,σP=|(A1σ1-A2σ2)|,在两种证券等比例投资的情况下,σP=|(σ1-σ2)/2|,即组合报酬率的标准差等于两种证券报酬率标准差差额绝对值的一半,选项C缺少“两种证券投资比例相等”这一条件,选项C的说法错误。③当r12<1且两种证券报酬率标准差均不为0,有(A12σ12+2A1σ1A2σ2r12+A22σ22)1/2<A1σ1+A2σ2,因此选项D的说法正确。