设a 0 =1,a 1 =0,a n+1 = (na n +a n-1 )(n=1,2,3…),S(x)为幂级数
问答题 证明
【正确答案】正确答案:由a n+1 = (na n +a n-1 ) a n+1 -a n =- (a n-1 -a n-2 ) a n =a n+1 +
【答案解析】
问答题 证明(1-x)S"(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
【正确答案】正确答案:S"(x)= (1-x)S"(x)=(1-x) na n x n-1 = na n x n-1 = na n x n = (n+1)a n+1 x n - na n x n = [(n+1)a n+1 -na n ]x n +a 1 x xS(x)= a n+1 x n ,所以 (1-x)S"(x)-xS(x)= [(n+1)a n+1 -na n -a n-1 ]x n +a 1 x 由a n+1 = (na n +a n-1 )可知(n+1)a n+1 -na n -a n-1 =0,由a 1 =0,所以(1-x)S"(x)-xS(x)=0 解微分方程得S(x)= ,由S(0)=a n =1
【答案解析】