设a
0
=1,a
1
=0,a
n+1
=
(na
n
+a
n-1
)(n=1,2,3…),S(x)为幂级数
问答题
证明
【正确答案】正确答案:由a
n+1
=
(na
n
+a
n-1
)
a
n+1
-a
n
=-
(a
n-1
-a
n-2
)
a
n
=a
n+1
+
由
【答案解析】
问答题
证明(1-x)S"(x)-xS(x)=0(x∈(-1,1)),并求S(x)表达式.
【正确答案】正确答案:S"(x)=
(1-x)S"(x)=(1-x)
na
n
x
n-1
=
na
n
x
n-1
=
na
n
x
n
=
(n+1)a
n+1
x
n
-
na
n
x
n
=
[(n+1)a
n+1
-na
n
]x
n
+a
1
x xS(x)=
a
n+1
x
n
,所以 (1-x)S"(x)-xS(x)=
[(n+1)a
n+1
-na
n
-a
n-1
]x
n
+a
1
x 由a
n+1
=
(na
n
+a
n-1
)可知(n+1)a
n+1
-na
n
-a
n-1
=0,由a
1
=0,所以(1-x)S"(x)-xS(x)=0 解微分方程得S(x)=
,由S(0)=a
n
=1