设A是三阶方阵,α
1
,α
2
,α
3
是三维线性无关的列向量组,且Aα
1
=α
2
+α
3
,Aα
2
=α
3
+α
1
,Aα
3
=α
1
+α
2
。
问答题
求A的全部特征值;
【正确答案】正确答案:α
1
,α
2
,α
3
线性无关,则α
1
+α
2
+α
3
≠0,α
2
一α
1
≠0,α
3
一α
1
≠0,且由A(α
1
+α
2
+α
3
)=2(α
1
+α
2
+α
3
),A(α
2
一α
1
)=一(α
2
一α
1
),A(α
3
一α
1
)=一(α
3
一α
1
)可知矩阵A的特征值为2和一1。又由α
1
,α
2
,α
3
线性无关可知α
2
一α
1
,α
3
一α
1
也线性无关,所以一1是矩阵A的二重特征值,即A的全部特征值为2,一1,一1。
【答案解析】
问答题
A是否可对角化?
【正确答案】正确答案:因为α
1
,α
2
,α
3
线性无关,而 (α
1
+α
2
+α
3
,α
2
一α
1
,α
3
一α
1
)=(α
1
,α
2
,α
3
)

【答案解析】