单选题 20.设A是3阶矩阵,R(A)=1,A有特征值λ=0,则λ=0( )
【正确答案】 B
【答案解析】因为R(A)=1,所以AX=0至少有两个线性无关的解向量,即对应λ=0至少有两个线性无关的特征向量.因为特征值的重数不小于对应的线性无关的特征向量的个数,故λ=0至少是A的二重特征值,也可能是A的三重特征值,例如: