【正确答案】正确答案:(Ⅰ)由题设 AB=A—B, ① 知 AB—A+B—E=一E, A(B—E)+(B—E)=一E, (A+E)(E一B)=E. ② 即A+E,E一B互为逆矩阵,且 (E—B)(A+E)=E, ③ 从而得 A—B一BA=O, ④ 由①,④式得证AB=BA. (Ⅱ)A有三个不同的特征值,故有三个线性无关的特征向量,设为ξ
1
,ξ
2
,ξ
3
.则有 A(ξ
1
,ξ
2
,ξ
3
)=(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)

, 两端左边乘B, BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)

. 由(Ⅰ)AB=BA,得 AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)

=B(λ
1
ξ
1
,λ
2
ξ
2
,λ
3
ξ
3
), 得A(Bξ
i
)=λ
i
(Bξ
i
),i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,因λ
i
是单根,故对应相同的特征值的特征向量成比例.故Bξ
i
=μ
i
ξ
i
. 若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论何种情况,B都有三个线性无关的特征向量ξ
i
(i=1,2,3).故A,B同时存在可逆阵P=(ξ
1
,ξ
2
,ξ
3
),使得P
—1
AP=
