填空题 设y=y(x)是由y 3 +(x+1)y+x 2 =0及y(0)=0所确定,则
  • 1、
【正确答案】 1、正确答案:[*]    
【答案解析】解析:此极限为“ ”型.求导中要用到y'(0),y"(0)等,先求出备用.由y 3 +(x+1)y+x 2 =0,有 3y 2 y'+(x+1)y'+y+2x=0, 将y(0)=0代入,得0+y'(0)=0,有y'(0)=0.再求导, 6y(y') 2 +3y 2 y"+y'+(x+1)y"+y'+2=0. 将y(0)=0,y'(0)=0代入,得0+0+0+y"+0+2=0,有y"(0)=一2.