【正确答案】正确答案:由题设,本题分两个大部分,一是求l在π的投影l
0
,二是求由l
0
生成的旋转曲面,其中第一部分是第二部分的基础.因为投影直线l
0
是经过直线l且与平面π垂直的平面与平面π的交线,因此只需求得此平面即可,设其为π
1
,下面先求平面π
1
的法向量n
1
,同时设平面π的法向量为n,由已知n={1,一1,2},由于,n
1
⊥n,且n
1
垂直直线l的方向向量{1,1,一1},因此n
1
={1,一1,2}×{1,1,一1}={一1,3,2}又因为直线f在平面π
1
内,因而直线l上的点(1,0,1)也是平面π
1
内的点,综上可得出平面π
1
的方程为一(x—1)+3(y一0)+2(z—1)=0化简得x一3y一2x+l=0.由此,直线l在平面π上的投影直线l
0
的方程为

以下再求l
0
绕y轴旋转所生成的旋转曲面S.设点A(x,y,z)在S上.过A作平面
2
平行于Oxz平面,即垂直于y轴,则霄π
2
与y轴交点为B(0,y,0),并设π
2
与l
2
交点为C(x
1
,y,z
1
),由L
0
的方程不难确定出x
1
=2y及

又由几何关系|AB|=|CB|,即距离相等,有x
2
+z
2
=x
1
2
+z
1
2
=4y
2
+

(1一y)
2
化简为4x
2
一17y
2
+4z
2
+2y=1,由点A(x,y,z)的任意性,知上式就是所求旋转曲面S的方程.解析二本题第一部分求投影直线l
0
的方程的过程中,在求平面π
1
的方程时,也可采用平面束的方法,将直线l的方程化为一般形式:
