已知{an}的前n项之和Sn=n2+n,数列{bn}的通项公式为bn=xn-1.
求数列{an}的通项公式;
解:由Sn=n2+n可知a1=2,数列{an}是等差数列d=2,∴an=2n;
无
设cn=anbn,数列{cn}的前n项和为Tn,求Tn.
解:cn=2nxn-1Tn=2+4x+6x2+8x3+…+2nxn-1,①则xTn=2x+4x2+6x3+8x4+…+2nxn,②
①-②,得(1-x)Tn=2+2x+2x2+…+2xn-1-2nxn