设随机变量(X,Y)服从二维正态分布,其概率密度为f(x,y)=
2
1
解析:E(X 2 +Y 2 )=EX 2 +EY 2 ,EX 2 =DX-(EX) 2 =1-0=1,同理EY 2 =1,从而E(X 2 +Y 2 )=2。