设三阶矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=3对应的特征向量依次为α
1
=(1,1,1)
T
,α
2
=(1,2,4)
T
,α
3
=(1,3,9)
T
。
(Ⅰ)将向量β=(1,1,3)
T
用α
1
,α
2
,α
3
线性表示;
(Ⅱ)求A
T
β。
【正确答案】正确答案:(Ⅰ)设x
1
α
1
+x
2
α
2
+x
3
α
3
=β,即

解得x
1
=2,x
2
=—2,x
3
=1,故β=2α
1
—2α
2
+α
3
。 (Ⅱ)Aβ=2Aα
1
—2Aα
2
+Aα
3
,则由题设条件可得 A
n
β=2A
*
α
1
—2A
n
α
2
+A
n
α
3
=2α
1
—2×2
n
α
2
+3
n
α
3
=

【答案解析】