单选题 16.微分方程y''一λ2y=eλx+e-λx(λ>0)的特解形式为( )
【正确答案】 C
【答案解析】原方程对应的齐次方程的特征方程为r2一λ2=0,其特征根为r1,2=±λ,所以y''一λ2y=eλx的特解为y1''=axeλx,y''一λ2y=eλ2x的特解为y2*=bxe-λx,根据叠加原理可知原方程的特解形式为y*=y1*+y2*=x(aeλx+be-λx),因此选C.