解答题 3.,αTβ=
【正确答案】令αTβ=k,则A2=kA,设AX=λX,则A2X=λ2X=kλX,即λ(λ一k)X=0,因为X≠0,所以矩阵A的特征值为λ=0或λ=k,由λ1+…+λn=tr(A)且tr(A)=k得λ1=…=λn一1=0,λn=k,因为r(A)=1,所以方程组(0E一A)X=0的基础解系含有n一1个线性无关的解向量,即λ=0有n一1个线性无关的特征向量,故A可以对角化.
【答案解析】