问答题
设4阶矩阵A=(α,γ
1
,γ
2
,γ
3
),B=(β,γ
2
,γ
3
,γ
1
),|A|=a,|B|=b,求|A+B|.
【正确答案】正确答案:A+B=(α+β,γ
1
+γ
2
,γ
2
+γ
3
,γ
3
+γ
1
), |A+B|=|α+β,γ
1
+γ
2
,γ
2
+γ
3
,γ
3
+γ
1
| =|α+β,2γ
1
+γ
2
+γ
3
,γ
2
+γ
3
,γ
3
+γ
1
|(把第4列加到第2列上) =|α+β,2γ
1
,γ
2
+γ
3
,γ
3
+γ
1
|(第2列减去第3列) =2|α+β,γ
1
,γ
2
+γ
3
,γ
3
|=2|α+β,γ
1
,γ
2
,γ
3
| =2(|α,γ
1
,γ
2
,γ
3
|+|β,γ
1
,γ
2
,γ
3
|) =2(|α,γ
1
,γ
2
,γ
3
|+|β,γ
2
,γ
3
,γ
1
|)=2a+2b. |A+B|=2a+2b.
【答案解析】