设f(x)在[a,b]有连续的导数,求证:
【正确答案】正确答案:可设 |f(x)|=|f(x 0 )|,即证 (b-a)|f(x 0 )|≤|∫ a b f(x)dx|+(b-a)∫ a b |f'(x)|dx, 即证|∫ a b f(x 0 )dx|-|∫ a b f(x)dx|≤6(b-a)∫ a b |f'(x)|dx. 注意|∫ a b f(x 0 )dx|-|∫ a b f(x)dx|≤|∫ a b [f(x 0 )-f(x)]dx| =|∫ a b [
【答案解析】